博客
关于我
Java线程池的应用
阅读量:198 次
发布时间:2019-02-28

本文共 2501 字,大约阅读时间需要 8 分钟。

利用Future与Callable高效计算斐波那契数列

斐波那契数列是计算机科学中的经典问题之一,常用于测试并发计算框架的性能。本文将介绍如何利用Java的FutureCallable结合起来,实现高效计算斐波那契数列。

代码实现

import java.util.concurrent.*; public class FutureCallableDemo {     static long fibonacci(long n) {         if (n == 1 || n == 2) {             return 1;         } else {             return fibonacci(n - 1) + fibonacci(n - 2);         }     }     public static void main(String[] args) throws Exception {         Callable
task = () -> fibonacci(30); ExecutorService executor = Executors.newFixedThreadPool(1); Future
future = executor.submit(task); System.out.println("计算第10个斐波那契数列,过会来取..."); while (!future.isDone()) { System.out.println("忙别的去吧,结果还在计算中..."); } System.out.printf("计算完毕,第10个斐波那契数列是:%d%n", future.get()); } }

运行结果

计算第10个斐波那契数列,过会来取...忙别的去吧,结果还在计算中......忙别的去吧,结果还在计算中...计算完毕,第10个斐波那契数列是:832040

通过上述代码,我们可以看到FutureCallable的结合使用,能够有效地并发执行斐波那契数列的计算。尽管使用了单线程的ExecutorService,但由于斐波那契数列的递归特性,实际上仍然需要等待所有递归调用完成。这表明在某些情况下,并发并不能显著提高性能。


线程池模拟多个工人并发处理任务

线程池是Java中处理并发任务的重要工具之一。通过线程池,我们可以轻松地创建多个执行者(worker),并让它们同时处理多个任务。下面,我们将通过一个简单的示例,展示如何使用ThreadPoolExecutor来模拟多个工人并发做工。

代码实现

import java.util.concurrent.*; import java.util.concurrent.TimeUnit; class Task implements Runnable {     private String name;     public Task(String name) {         this.name = name;     }     public String getName() {         return name;     }     @Override     public void run() {         try {             Long duration = (long)(Math.random() * 100);             System.out.println("正在做工中,执行者 : " + name);             TimeUnit.SECONDS.sleep(duration);         } catch (InterruptedException e) {             e.printStackTrace();         }     } }public class BasicThreadPoolExecutorExample {     public static void main(String[] args) {         ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newCachedThreadPool();         for (int i = 0; i <= 5; i++) {             Task task = new Task("Task " + i);             System.out.println("新任务添加成功 : " + task.getName());             executor.execute(task);         }         executor.shutdown();     } }

运行结果

新任务添加成功 : Task 0新任务添加成功 : Task 1新任务添加成功 : Task 2新任务添加成功 : Task 3新任务添加成功 : Task 4新任务添加成功 : Task 5正在做工中,执行者 : Task 0正在做工中,执行者 : Task 3正在做工中,执行者 : Task 1正在做工中,执行者 : Task 2正在做工中,执行者 : Task 4正在做工中,执行者 : Task 5Process finished with exit code 0

通过上述代码,我们可以看到ThreadPoolExecutor创建了多个执行者,并同时提交了多个任务。每个执行者都会独立地执行自己的任务,并在完成后退出。这样可以有效地利用多核处理器的资源,提高任务处理的效率。

转载地址:http://gggj.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NI笔试——大数加法
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
No Datastore Session bound to thread, and configuration does not allow creation of non-transactional
查看>>
No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
查看>>
No Feign Client for loadBalancing defined. Did you forget to include spring-cloud-starter-loadbalanc
查看>>
No mapping found for HTTP request with URI [/...] in DispatcherServlet with name ...的解决方法
查看>>
No module named cv2
查看>>
No module named tensorboard.main在安装tensorboardX的时候遇到的问题
查看>>