博客
关于我
Java线程池的应用
阅读量:198 次
发布时间:2019-02-28

本文共 2501 字,大约阅读时间需要 8 分钟。

利用Future与Callable高效计算斐波那契数列

斐波那契数列是计算机科学中的经典问题之一,常用于测试并发计算框架的性能。本文将介绍如何利用Java的FutureCallable结合起来,实现高效计算斐波那契数列。

代码实现

import java.util.concurrent.*; public class FutureCallableDemo {     static long fibonacci(long n) {         if (n == 1 || n == 2) {             return 1;         } else {             return fibonacci(n - 1) + fibonacci(n - 2);         }     }     public static void main(String[] args) throws Exception {         Callable
task = () -> fibonacci(30); ExecutorService executor = Executors.newFixedThreadPool(1); Future
future = executor.submit(task); System.out.println("计算第10个斐波那契数列,过会来取..."); while (!future.isDone()) { System.out.println("忙别的去吧,结果还在计算中..."); } System.out.printf("计算完毕,第10个斐波那契数列是:%d%n", future.get()); } }

运行结果

计算第10个斐波那契数列,过会来取...忙别的去吧,结果还在计算中......忙别的去吧,结果还在计算中...计算完毕,第10个斐波那契数列是:832040

通过上述代码,我们可以看到FutureCallable的结合使用,能够有效地并发执行斐波那契数列的计算。尽管使用了单线程的ExecutorService,但由于斐波那契数列的递归特性,实际上仍然需要等待所有递归调用完成。这表明在某些情况下,并发并不能显著提高性能。


线程池模拟多个工人并发处理任务

线程池是Java中处理并发任务的重要工具之一。通过线程池,我们可以轻松地创建多个执行者(worker),并让它们同时处理多个任务。下面,我们将通过一个简单的示例,展示如何使用ThreadPoolExecutor来模拟多个工人并发做工。

代码实现

import java.util.concurrent.*; import java.util.concurrent.TimeUnit; class Task implements Runnable {     private String name;     public Task(String name) {         this.name = name;     }     public String getName() {         return name;     }     @Override     public void run() {         try {             Long duration = (long)(Math.random() * 100);             System.out.println("正在做工中,执行者 : " + name);             TimeUnit.SECONDS.sleep(duration);         } catch (InterruptedException e) {             e.printStackTrace();         }     } }public class BasicThreadPoolExecutorExample {     public static void main(String[] args) {         ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newCachedThreadPool();         for (int i = 0; i <= 5; i++) {             Task task = new Task("Task " + i);             System.out.println("新任务添加成功 : " + task.getName());             executor.execute(task);         }         executor.shutdown();     } }

运行结果

新任务添加成功 : Task 0新任务添加成功 : Task 1新任务添加成功 : Task 2新任务添加成功 : Task 3新任务添加成功 : Task 4新任务添加成功 : Task 5正在做工中,执行者 : Task 0正在做工中,执行者 : Task 3正在做工中,执行者 : Task 1正在做工中,执行者 : Task 2正在做工中,执行者 : Task 4正在做工中,执行者 : Task 5Process finished with exit code 0

通过上述代码,我们可以看到ThreadPoolExecutor创建了多个执行者,并同时提交了多个任务。每个执行者都会独立地执行自己的任务,并在完成后退出。这样可以有效地利用多核处理器的资源,提高任务处理的效率。

转载地址:http://gggj.baihongyu.com/

你可能感兴趣的文章
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>
Metasploit Web服务器渗透测试实战
查看>>
MFC模态对话框和非模态对话框
查看>>
Moment.js常见用法总结
查看>>
MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
查看>>
mxGraph改变图形大小重置overlay位置
查看>>
MongoDB可视化客户端管理工具之NoSQLbooster4mongo
查看>>
Mongodb学习总结(1)——常用NoSql数据库比较
查看>>
MongoDB学习笔记(8)--索引及优化索引
查看>>
mongodb定时备份数据库
查看>>
mppt算法详解-ChatGPT4o作答
查看>>
mpvue的使用(一)必要的开发环境
查看>>
MQ 重复消费如何解决?
查看>>
mqtt broker服务端
查看>>
MQTT 保留消息
查看>>
MQTT 持久会话与 Clean Session 详解
查看>>
MQTT工作笔记0007---剩余长度
查看>>
MQTT工作笔记0009---订阅主题和订阅确认
查看>>
Mqtt搭建代理服务器进行通信-浅析
查看>>